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ABSTRACT
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A new n-dimensional Newton method is presented. In each step a whole
n-dimensional ball is determined rather than a single new approximation point.
This ball contains the desired zero of the given function. The method is
globally convergent. If the given initial ball does not contain any zero, then i
the method stops after a finite number of steps. Depending upon the assump-
tions which are made, the convergence of the ball radii is linear, super-

4 linear or quadratic.
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Because (inclusion) balls are used, it is convenient to call the method a ball

Newton method. Accordingly the "usual" Newton method in the following will be called

a point Newton method.
The basic idea of the following method is the use of sets (balls) instead of

points. This idea originates in interval mathematics. The first interval Newton

A A e et

method was given by R. E. Moore in [4]. It is easy to show that the Moore method is

: globally convergent for n = 1. This was shown in [5] for the first time. In the
meantime, many interval variants of the Newton method have been investigated. A

survey for n =1 has been given by W. J. Beiser (2]. It seems, however, that in

the case n > 1 no globally convergent interval Newton method has been found. There
is indeed a criterion by Alefeld-Herzberger [l] which ensures global convergence for

Moore's version. Nevertheless this criterion is rather unwieldy and is not satisfied

in most practical cases.

For complex valued functions f : B ¢ € » €, complex discs can be used

instead of complex intervals for the definition of a disc lewton method. This was

i done by P. Henrici [3] but no global convergence could be proven yet. It will be
shown that the complex problem can be treated as a special case of the following
general theory.

In order to define the point Newton method in general the following two

assumptions are made:

§* exists on B , )
(:')-l exists on B . (7)
In contrast to (6), no differentiability of f on B is demanded for the new
method. Instead of (6), it suffices to assume the validity of a certain inclusion

hitz condition. This condition can be formulated especially simply for the

case n =2 and for B ¢ €. It then reads

£ix) = £(y) Gix = y) for X, Y ¢ B . (8)
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Herein S := {z ¢ cjfs - z| < ois|} is a complex disc with midpoint ra
als|. It is assumed that 0 <o <1, i.e,
o7 13- )
These conditions (6), (7) for the point method and (8), (9) for the ball method can nc
be compared. On the one hand, the assumption (8) is weaker than (6), iecause § 1o

(8) does not even have to be differentiable. On the other hand, (8) and (%) are
stronger than (6), (7) because the data S, o have to be known explicitly and
because (6), (8) and (9) already imply (7).

et : ; n ’ : .
The conditions to be imposed on f in R for n > 2 are still quite weak.

They are not nearly as restrictive as the Kantorovich condition (see Ortega-rheinbol it
[7], p. 421). Even if £ 1is analytic ttat condition is true in general only in a

very small neighbourhood of a zero.

In what follows the following problem will not be considered: given a functi
£ 6 4>Rn, find all zeros of f in G. If there is more than one zero in G and
if G 1is convex then there are in general points in G where #' 1is not inverti

This can be shown already in the case n = 1 by the mean value theorem. Hence at
these points the point Newton method (1), (2) cannot be applied. Therefore the Newton
method always has to be combined with some other method if all the zeros of £ on
B are to be found. Actually, the new proposed ball Newton method also could be
used for the solution of this more general problem. It not only guarantees the
;gclusion z e ZV for v=0, 1, * * * but it also gives information regarding
géclusions of the kind z ¢ M, where M is an appropriate set. With interval
Newton methods these ideas have already been used successfully for the determination
of all zeros of f in G, especially in the case n = 1. There will be another
report upon the adoption of the ball Newton method to this more ueneral proklemn.

It is therefore not the essential purpose of the following paper to comrute
the zeros of a given function £. Rather, it will introduce a new familv of Newt

methods and will investigate their properties.
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1. Introduction. / .,;v
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In what follows the n-dimensional ball B := fz « R [Ib -2zl - = - F 15 ~
~ . 3 n ",
used as the basic domain. The zeros 2z B of the given function f : B - K are
wanted.
5 e
Let f be differentiable on B with the Jacobian ¢'. Let the inverse (')
exist on B. Then the usual Newton method can be defined: The sequence "x(‘ of
approximations X, € R is recursively constructed by
xO SRBRE (1)
x :=x-(¢')-l(x)f(x)for 53 0 [ R (2)
v+l v v \
There are many variations of (1), (2). 1In the simplified Newton method (2) is
replaced by
%* :=x-(¢“')-1(x)f(x) tor . m= 0, L, > = ° (3)
v+l v 0 \

The literature dealing with the Newton method is huge. An introduction is given by
L. Rall [8], and a survey may be found in the book of Ortega-Rheinboldt [7].
The methods (1), (2) and (1), (3) have the advantage that they are convergent in
a neighborhood U(z) of a zero z of f. This means that
%y € u(z) (4)

implies x ¢ U(z) for all v = 0, 15 * * * and that linm X = z. This property is
Y sy

called local convergence. If ¢' 1is continuous or if ¢' satisfies a Lipschitz

condition, then the order of convergence of (4), (2) is superlinear or guadratic.

*
This paper was stimulated by the "Symposium on Analysis and Computation of Fixed

Points” at the University of Wisconsin-Madison, Madison, Wisconsin, U.S.A. in Ma
of 1979. It was written while the author was visiting the Mathematics Research
Center at the University of Wisconsin. Address of the author: Institut fur

Angewandte Mathematik der Univers.tat, Hermann-Herder-Str. 10, D 7800 Freiburg i. Br.,

West Germany.

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024.




The disadvantages of (1), (2) and (1), (3) are well-known:
1) From (1) it may follow that

!
x 4B (5)

for some v « N. 1In this case the method cannot be applied further.
2) Even if X, < B is true for all v =0, 1, - - - the sequence {xv} is not
necessarily convergent.
3) Without additional assumptions on f there are no easily determined a priori
or a posteriori error bounds.
In order to avoid the first two disadvantages, modified Newton methods are

sometimes considered instead of (1), (2). For example the new rule

=1 it
o o av(5W (xv) f(xv) for v =0, 1,

is often considered (see Ortega-kheinbold [7]). Herein {av} is a sequence of
appropriate real numbers often defined by minimization methods. If the av are
chosen suitably then (5) can be avoided and convergence for all Xy ¢ B can be

enforced. This is called global convergence. Theoretically these results are very

satisfying. Practically, their use is often quite awkward. Because of this and in
order to remove the above third disadvantage, in what follows a new approach is
presented.

The main idea of the new method is to construct a whole ball ZM_l with the

rsmarty 5o 2 et 3 M . ; - & :
property z instead of determining a new point xv+1 in each step as in (2)

v+l g
or (2). Hence in each step a new a priori error bound is found. The initial ball
L - S Z, ‘ Zl 1 B 1is chosen, then case (5) can never occur. It will be
shown that the radii of the balls Zy converge to zero at least like a geometrical
sequence. Since 2 Z/ and z) ¢ ZJ, zu > é, hence global convergence occurs.
nder aspropriate assumptions on f, even superlinear or quadratic convergence can

be shown. If there is no zero 2z of £ in B then the method stops after a finite

nunber of steps. This is an additional advantage of the new method.
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SIGNIFICANCE AND EXPLANATION

nroblems in Numerical Analysis is the computation of the

n

n ;
zexos of a function f : R -+ R . For centuries, the so called

n-dimensional

lewton method has been used and investigated.

This method has some very

important advantages.
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i) 1If it converges then its rate of convergence is usually quadratic.

ii) It is quite easy to describe, to understand and to program.

There are, however, very severe restrictions, drawbacks and disadvantages

to this method:

i) In its pure form it is not a method at all nor does it provide an

algorithm since in general one cannot predict a priori if it will work.

ii) It provides "approximations" but no error bounds, i.e. these "approximations"

may have no significance at all.

iii) Even if it works and converges (which contrary to popular belief does not

\ occur tooc often) it cannot give any information whether a zero lies in a

given domain or if that domain is free of zeros.

The method described in this paper avoids all the above disadvantages with-

out losing the advantages of the usual Newton method. It is based on the

fundamental idea of interval mathematics: Instead of computing "approximation

points" to the solution of a mathematical problem without known error bounds,

one should try to evaluate "approximation sets" which are gquaranteed to contain

the solutinn. In the method used here, one of the most simple such sets is

used: namely balls. All the

disadvantages of the "point" Newton method disappear

b3

oot as one switches to a "ball" Newton method. Astonishingly the assumptioas

z o e made for the function £ are not more complicated. In a certain sense

n “zimpler" and more "natural."

51
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Instead of differentiability of £

in inclusion Lipschitz condition is required.

wording and views expressed in this descriptive
71 e, and not with the author of this report.
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2. Notations and definitions; balls and regular ball operators.

2.1. Let n ¢ N be the fixed dimension number. Let an arbitrary norm . e

S M i ke S s
N

chosen on R". As matrix norm for n * n-matrices the operator norm corresponding
} : to ll+ll will be used. Only real values will be considered for simplicity.
However, in examples the space € will be used also, as [ = PZ.
i Notations:

1) Lower case Greek letters (u, B, * * * , %, Z , * ° * ) always mean real
i numbers.

2) Lower case Roman letters (a, b, S zv, =+ <) are n-dimensional

vectors or vector valued functions. (Exception: n always means the integer

! dimension number. )

| 3) Capital Greek letters (¢, Z, A, * * * ) denote n » n-matrices or matrix

functions. As usual Ax, IA means matrix multiplication.

4) Capital Roman letters (A, B, - - - , 32, Zv, * * * ) are n-dimensional sets, h -

in particular balls or ball valued functions. (Exception: I denotes the

identity matrix.)

5) The function family considered is denoted by F.

Remark: In contrast to functional analysis, which uses different alphabets to
distinguish between elements and operators, here different alphabets will identify
points and operators which have values in different sets.

! 2.2. Definition (ball): Let z ¢R', 0 < £ ¢ R. The set :

bt

n ’
Z:={xeR |lz - xl <z} {

is called a (n-dimensional real) ball with the midpoint (center) =z and the radius

C.

Ry
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Motations to (10):

&)
"

12 )

z =mid 2 ,
(11)
rad 2 ,

[l

X € 2 1 Hx-zll;!,

The midpoint of a ball which is characterized by a capital Roman letter will be
called by the same - but lower case - Roman letter. For the radius, however, the
corresponding small Greek letter is used. If G _‘len then the set of all such balls

@S

G will be denoted by K(G). Clearly R" <K(K').

Properties:

1) Any ball 2 ¢ K (]Rn) is compact and convex.

2) The inclusion 0 ¢ 2= (z, £} is true if and only if ¢ 2 iz il

Definition (K _(F")): The set of all balls 2z ¢ K(R') for which O ¢ z holds is
denoted by ]Kno (IRn).

Properties:

1) Let be Z <K (R") and (differing from the notation in (11)) use the characteriza-

tion

2={(z, ¢z

then the following holds: 2 ¢ K _ (R') iff z#0 and 0 <z < 1.

2) If Eo= (2 X kgl e mno(m"), then the set of all balls (w2, * llully, where

R, lies in a (double) cone with the vertex at zero and with the defining

angle « := arc sin A. See Figure 1 for n = 2.
¥ % : n
Definition (ball arithmetic): let a <R, a <R, Z2=1(z, L) ¢ ]K(]Rn). De fine

%= B s ae Lez, o faley (12)
d*@=Z+a=a+e ) (13)
Further operations (e.g. X + ¥, + « ¢ ) are not needed in what follows and
thelr algebraic structures are therefore not investigated here.
-




Properties: Let X

/

Figure 1. n = 2, Euclidean metric. The set of balls (uf,ilyu2ll? for
L ¢ R 1is contained in a (double) cone with the defining angle
% = arc sin  A.
Properties:
1) If Z =0 then (12) and (13) are the usual definitions on K.
2) The following inclusions are true:

¢ *“x e ®* 2 for all ¥ ¢ Z ,

a+xea+2 forall x ¢ 2

Definition (X r ¥)): Let X, ¥ ¢ K(IR') and let X n Y # #. Then there is (at
least) one ball Z - K(IR') for which X n Y c Z2 and with rad 2= min. If
there is more than one, an arbitrary one is selected. It is denoted by

ZR=NCx ey

See Figure 2 for n = 2 and for the Euclidean metric.

1}

5
x

1

~
<
[}

(y, ny and 2=(Xa ¥y=¢(2, ). Then the

following inclusions and inequalities are true:

(14)

-




1 Figure 2. n = 2, Euclidean metric. The intersection X 1 Y of the two balls
X and Y is shaded. 2 = (X n Y) is the smallest ball containing
X' Y

2.3. Definition (regular ball operator): Let A be a regqular n » n-matrix, and

¢R with 0 < A < 1. The regular ball operator L is defined by the ball

valued operator

n
L: R >k _(R) u {0} ,
no

Lx := (Ax, MAxl) for x ¢ R®

Notations: The operator L will also be denoted by
L= CONGORYY
Remarks:
1) In what follows, more general ball valued operators S : b *JK(IRn) are not

needed.

2) Any ball operator can also be considered as an operator ball according to

L =({A, 2))
Sk (15)
= {y n x n-matrix III (p = M)xIll < AMAxIl for all x ¢ R "i
3) This view and formula (15) are equivalent to
Ux € Lx := (Ax, MAxI) for all x ¢ R . (16)

4) The inclusion (16) will be abbreviated to

Y € L

-8-




Properties: For any regular ball operator L the following is true:
1) 04 Lx for x #0

2} W e E= (CA, X)) 4if and only if

hoA™ = Tl= ey - A < A

This means that the relative error between 1 and /A 1is bounded by » < 1.
3) If ¢ ¢L=((A, \)) then y is a regular matrix and for the inverse . = the
following inequality holds with cond A := llAll HA-IH

N - th=n@™ - Al ;2= ocona 1 . (7
This means again that the relative error between w-l and A_l is bounded. If in
addition

2 1

g 1 + cond A
holds then the right hand side of (17) is smaller than one, i.e.

=1 =1
V] € Ll = CCA T, T

cond A)) (18)

and Ll is a regular ball operator.
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3. The class of functions F.

3.1 Definition (class F): Let the class F of functions be the set of all

Ro—— TR T——

functions £ : B ~ R which satisfy the fo.ilowing property: For each set C
of the form
i c=f(a, a)nB (19)
’ with a + B, there exist a regular n < n-matrix A = A(C) and a real number

X = A(C) such that

0 < < I (20)
=

8 and for all x, y £ C,

lx = y = A(E(x) = £ < AAEX) - €D . (21)
' If there is more than one A(C) and/or A(C), an arbitrary one is selected and
attached to F.
1 Remarks:
1) By using the regular ball operator
| L o= (CA, 2 D) (22)

the inequalities (20), (21) can also be written as

X =y € L{E(x) = €y)y) For %, v € C . (23)

2) If £ < F then the inverse £L of f exists on the set f(B) := {f(x)|x < B}.
Hence by defining u := f(x), v := f(y) the inclusion (23) can also be written as

£ lw - £l e tiu- v . (24)

“rom (24) the class F of functions can also be characterized by the

Equivalent Definition (F): The class F consists of the set of all functions

R »m" for which f-l exists on f(B) and which satisfy the inclusion

b | Lipschitz condition (24) on C defined by (19).

W
[3e)

With these results and with those of £2, the functions f ¢ F have the following
Properties:

1) There is at most one zero 2z of £ « F in B.

2y on defined by (19), any function f - F satisfies the Lipschitz condition

!
i

-10=-

T

¢
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=1

Hence, f 1s continuous on B. There are similar Lipschitz conditions for f .

3 3) Let f - F be Fréchet differentiable at the point x ¢ B and let

the Jacobian. Then (ﬁ')-l(x) exists and is bounded by

LA g eon < oo« aaban .
A~y = B

1

Moreover, the relative error between A and (¢')" can be bounded by

e ™ oo = on™M = e eon™ - o<

4) Let f < F be Fréchet differentiable on the entire domain

Then for all x, y € C

2)
1= 3

et (x) = o' @l < A

¢' (x) be

C defined by (19).

N 5) The result of 4) implies: Assume that for all sets C := A n B where

a= mid A ¢ B the following is true:
"t em <, l

A R

|
for appropriate real values u, AO e R. If

A(Cc) >0 for rad A >0 |,

the:. ' 1is continuous on B and if there exists o ¢ R such that

) (C) S rad A ,
then ' 1is Lipschitz continuous on B.
3.3. Criteria for € ¢ E.
Assume that there exists a matrix ¥ = y(x, y) (= uly, x))
defined by (19) such that

f£(x) = £(y) = 4(x - y) .

-11-
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for all

(25)

(26)

(27)

%X ¥ e C

(28)
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This is certainly true if f satisfies one of the mean value theorems on C (ze«
Ortega-Rheinboldt ([7]). 1In general there are infinitely many such matrices. It will
be shown in §4 how to construct such matrices | which are continuous.

3.3.1. Lot there exiat @ =4t & y) on C and let the inclusion

vl v e 29) 4
be satisfied for all x, y ¢ C with the regular ball operator L = ((/, )). Then |
(21) is true, i.e. f € F.

3.3.2. Let there exist an n x n-matrix A and a real constant 0 < » < 1 such that
for all x, y € €

T = Ayl < A/ +2) . (30)

- -1 1 .
Then A = and § “(x, y) do exist on C, the operator L := ({(A, »)) is regular

and vJ;_l € L. Hence f < F by 3.3.1.
3.3.3. Let f be continuously Fréchet differentiable on C with the Jacobian
¢' = ¢'(x, y). For x, y € C define:
1
Vix, y) = [ ¢'(x + tly - x))at . (31)
0
From the Mean Value Theorem and because C:= A n B is convex, the following two
additional sufficient conditions arise:

3.3.3.1. Let there be a regular n x n-matrix A and a real number

0 <0 <1/(1 + cond A) such that for all x ¢ C:

3 xf & L, o= UKL, 833 (32)

2

Then also Y (x, y) € L2 for all x, y € C, furthermore ",'1-1 (x, y) exists on _,

=1

and with the definition ) := cond A, the inclusion ¢ ~ « L= ((A, V)

o
1 =0
holds by (18). Then, £ ¢ F by (29).

=l2= {




3.3.3.2. Let there be an n » n-matrix A and a real number O < . < 1 such that
for all x € C:

lx - A¢* Gall < 2/ (1 + Q)

Then (30) holds, so /\-1 and w_l(x, y) exist for x, y e C and f ¢ F holds.

3.4. Examples: The case n = 1 and the complex case.

The two spaces R and [T can be treated together. As usual € is imbedded in
1R2; furthermore on both R and [ the Euclidean norm is used. In what follows,
the case n =1 is shown; the notations for T are then added in square brackets: |

The ball 2z = (z, ¢) is an interval [a disc]. If O § Z then z7! exists ana

is an interval [a disc] which can be written as

If x € Z then also x-l €3 e
The application of a regular ball operator S = ((X, o)) to an element x can
be interpreted as real [complex] multiplication of the real interval (1, 7)) =
=l -0,1+0) by 0# I eRle T)] and x ¢ R[e¢ €] according to
Sx = (2Zx, o|Zx|) =% * (1, o) * x . (33)
For functions f : B > R[] and C defined by (19) one has the
Criterion: On R[C] the property f ¢ F is true if and only if f satisfies on
any set C the inclusion Lipschitz condition
f(x) - f(y) € S(x - y) for X, y €€ . (8)
Herein S = X ¢« (1, 0) is defined according to (33) with 0 # ¥ ¢ R[- €] and

0 <0 < 1. The ball operator L = ({A, X)) in (21) and (23) is defined by
bm $ @~ 8% . 0 me . (34)
If f is differentiable on C [hence holomorphic] then (8) is satisfied for

' (z) e T+ (1, o) £0r 2 € € (35)

~-13-
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The proofs are elementary (on € for example by using the inversion of complex

circles] and will be omitted.
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4. The ball Newton operator N.

Definition (ball Newton operator): Let f ¢« F, A = (a, a) ¢ K(BJH with a ¢« B. Let
L = {({%, 1)) be the regular ball operator corresponding to C := A n B

according to (22). Define the ball Newton operator N by

N: c-oKE®E) , }
Nx := x - Lf (x) (36)
= (x - Af(x) , AlAE(x)I) for x e . |

Obviously N = N(C), this dependence will be observed and used later occasionally.

Properties:

1) From (13) and by (11) it follows that

x - Af (x)
and (37)
AAE (x) Il

mid Nx

rad Nx
Hence both mid Nx and rad Nx are continuous on B.
2) If 2 € € ‘thens:

f(z) = 0 if and only if z = N(2)

Hence the zeros of f are on C exactly the fixed points of the operator N.

3) Test N (Non-existence): If x ¢ C and

CnNx=g
then there exists no zero of £ on C.

4) Test E (Existence): Let f ¢ F and assume that f is Fréchet differentiable

on C. Let there be one point x < C such that

N% '€ < (38)

Then, f has (exactly) one zero z ¢ C.
Sy If % 2 < € and £(2) =0 then

2. e NY o (39) 3

This means: By applying the Newton operator N to an arbitrary point x ¢ C one :

gets an error hound for the zero 2z of f in C. In other words: By applying the

-15-
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Newton operator N no zero z of f can "get lost." However, x { Nx if

X # z. ’
6) Let there exist a sequence {xv} with X, C for v ¢eN and with 1lim x = z,

where £(2) = 0. Then the following is true:

ieNxv for v ¢ N ,

1
N
5
o
=

lim mid Nxv
AV o

"
o
.
—
&
-

lim rad Nx
V>0

This means: The application of the Newton operator N to a convergent seguence
{x\)} gives a sequence of error bounds (Nxv} which converges also in the sense of
(40) and (41).

The proofs of the properties 1) to 3) and 5), 6) will be omitted. Only the
proof of Test E will be given. The basic idea of this proof has already been used
in an earlier paper [6]. Define x = (El, CERCEIL P TR R R W

n 1 n

f = (cl, LR e v:n), ww = a.pu/agv. Let the matrix vy = y(x, y) have the

£ 4 - s . & & ® u =
components ww ww(,l. 52, i Cv, N,e Nyee nn) for u, v=1(1)n.

Let the wuv be defined by the following divided differences

¢u(€1;"‘,Ev_lyiv,ﬂv+1,"',nn)-wu(El:"'.Ev_l,ﬂv.nv+l.-'-,nn) g
for £ #£ n
&= n v ;i
v v
by =
¢uv(€1l' Igv_llgvlnv+ll...lnn) for EV = nv .

The identity (28) is satisfied by the construction of . If one of the arguments
x or y is fixed, then y(x, y) is continuous with respect to the other argument
y or x on C. Because of f ¢ F, the inverse w-l (x, y) exists for all

X, ¥ ¢ C. Furthermore, w-l(x, y) 1is also partially continuous with respect to

X or y on C. Let x ¢ C be fixed. Define

=16~
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gly) s=y = ‘}-1(x, e . (42)

The function g is continuous for y < C. Furthermore, by (28) the identity

gily) = x = J-l(x, y) £ (x)

holds. By using (36), (29) and (38) one then gets

gly) € x - Lf(x) = Nx < C . !
Hence the continuous function g maps the convex and compact set C into itself.
By the Schauder fixed point theorem, there is therefore at least one fixed point

¥ = g(§) ¢ C. But because of (42) this fixed point y of g is also a zero of the

function €. s




5. The simplified ball-Newton algorithm SNA.

5.1. Suppose f F.

Problem:

i) 1Is there a zexo z of f on B?

ii) 1If yes, compute 2z in a constructive way.
How to proceed: A gimplified ball Newton algorithm SNA will be presented. Starting
with ZO := B successive balls Zl' zz, * * * will be constructed with the midpoints

z :=mid ZQ € B for v=0,L = *

Either the algorithm stops after a finite number of steps. This is true if and only
if f does not have a zero 2z ¢ B.

Or the construction can be continuated indefinitely. This happens if and only if
there is a (uniquely determined) zero z of f on B. Then the midpoints z ~con-
verge to that zero 2. Furthermore, at each step the error inclusion z ZV holds
and the radii iv converge to zero.

During this simplified algorithm SNA the fixed initial parameters A(B), A(B)
are always used, notwithstanding the possibility that later on better data A(ZV),
z(z)) could be available. Hence SNA corresponds to the simplified point Newton
method (1), (3). Like the latter it is only linearly convergent. A more general
Newton algorithm NA with updating in each step will later be presented in §6. It
corresponds to the general point Newton method (1), (2) and, therefore, is super-
linearly or even quadratically convergent.

5.2. Preliminary remark. Let A = (a, a) be a ball and relative to the midpoint

a define the new ball Na := a - Lf(a) with the Newton operator N. Then, depending
on the value of llf(a)ll, different possibilities arise as sketched in Figure 3 for
n = 2 and the Euclidean norm. As long as Illf(a)ll is very small, the ball Na is
completely contained in  A. For growing values of lif(a)ll the radius of Na expands.

The intersection A Na, which is shaded in Figure 3, is first growing but shrinks

latcr and finally disappears completely. Let S be the diameter of the set A n Na.

=18~
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| Then by inspecting Figure 3, one sees that always E
H < 2)a 3
4] = 5
B |
|| |
' :
H
i

|
'
| Figures 3a) to 3-): n = 2, Euclidian norm. Comparison of the balls A = (a, a)
i and Na for different values of Il f(a)ll. The intersection

A n Na 1is shaded. 1Its diameter is &. The ball (A n Na)
is dashed.

{
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The maximum is reached in figure 3c). By constructing the smallest ball
which contains the set A n Na (this ball is dashed in Figures 3c) to 3e)), one

| therefore gets for « # 0O

6/2 = rad (A nNa)< da < o

Kindly note that the midpoint of the ball (A n Na) always lies in A& (and in

; too). This follows from (14).

i 5.3. Definition of the algorithm SNA.

Ssince f ¢ F, there are constants A(B), A(B) satisfying (20), (21). With
these constants the fixed Newton operator N is defined by (36). The algorithm SNA

| is defined recursively. Since the initial ball 2_ :=

o ¢ B has an exceptional position,
ii the determination of Zl is different from that of 22, Z3, .
Initial step: Define Z0 = B = (zo, ;o) and furthermore the ball Nz .
L. IE Zo n Nzo = @ then the algorithm is stopped.
3 25 NLE ZO n Nzo # @ then define
' Zl = (Zo n Nzo) & (44)

is already defined with the

Continuation step: Assume that 2, for v >1 ;

property zv = mid Zv € ZO' The ball sz is derived from z . !

Yo EE Zv n sz = @ then the algorithm is stopped.

2o IE Zv n sz # # then a new preliminary ball Z;+l is constructed by
* .= ( g
il z, n sz> s (45)

b 2% TR 7 ZG+1 a Zo = @ then the algorithm is stopped.

2.2 let 2* n ZO # @ and let z*

o= i *
v+l v+l e zv+1'

4 % .
i 2.2.1. 1If zv+1 € z0 then define
1 o= * (36) |
I Zv+1 v z\)+l . A
|
{

, i
2.2.2. If 2% ¢ 2 then define

N

= ( * A
zV+l i ZO g zu+l) E s
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5.4. Theorem l: Suppose f ¢ F. The function f has no zero in B 1if and only i1

{ the algorithm SNA stops. The function f has a (uniquely determined) zero

4

{ N

5 Z ¢ B if and only if the algorithm SNA can be continued indefinitely. In thls
case it yields a sequence (Z\)} of balls Z\l = (z), z) for which

limz =2 ¢ B
v

z €2 for v =20, 1,

The sequence of the ball radii converges at least linearly to zero according to

1im§v=0 '

= S L 49)
il < )‘;v for v 0y 15 (

4
Proof:
1) 1If X =0 then f is a linear function by (21). 1In this case the applicatiocn
of the ball Newton operator N to z, vields the point z. If z ¢ B then the
algorithm stops at the initial step. If 2z ¢ B, then the algorithm never stops and

gives the result zv =(2, 0) forall v=1, 2, * = ¢ . In what follows, therefore,

A > 0 can be assumed with loss of generality.

2) Assume that there is a (uniquely determined) zero 2z of f on zO := B. Then

z € Nz, by (39). Therefore, z e 2, also, where 2, is defined by (44). Hence,

the algorithm is not stopped during the initial step.

Assume that it is already proved that 2z ¢ ZV. By construction, z - ZO'
There fore, z ¢ sz by (39) and this implies z ¢ Z;+1'

n ZO=$D and therefore the zlgorithm is

where 2Z* is defined bv
v+l

: - *
(45). Hence, neither Zv nNz\) # nor Z\)+1

not stopped at the v-th step either.

This is true for all v =0, 1, * * * and means: If 2z ¢ B, then the ball
Newton algorithm SNA does not stop.
3) Conversely, assume now that the algorithm SNA does not stop. It is to be shown

that the sequence {zv] of the ball midpoints converges to a limit point =z  &.

=21~
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Initial step: From the definition (44), one deduces because of z1 € ZO and because

of (43) the two inequalities

Continuation step: By inserting (43) in the definition (45) and observing (14) one

gets

* = r 52
Ilz"_+l z('lll SEEN (52)
rk r ) 53
B+l S A5 G
In the case 2.2.1. because of (46) this gives
- Z 54
llzv+1 zvll S (54)
r g R 55
Su+l = 'Cv B3}
In the case 2.2.2., one deduces from the definition (47) by observing (14) the
inequalities
R * 56
”zv+l Z\.)+1l| = Soal K56
g * 57
RVED S = U+l e

The inequalities (52), (56) and (53) together with the triangle inequality therefore

yield
| - < T+ r*
Izw_:L zvll S St
(58)
cSre G R R S
= 7y
The inequality (57) together with (53) lead to the previous inequality (55).
These proven inequalities (51) for v = 0 and (55) for v > 1 are exactly the

inequality (49) claimed in Theorem 1. By using induction one gets from this that

£8T NG, Lpaees Sl (59)

combining the inequalities (50), (%4) and (58) and by observing (59), one gets for

all =0; Ly * ¢ * the bouhds




B e e ST PSR A T v e

B! | = r )
} lzv+l z}H < ’0(1 + M)A
)
! and from this for all u > v,
| o o )
- LS .
Ilzu zv” L T A
Hence, ’zv? is a Cauchy sequence because X < 1. Therefore, zv converges to a
limit point 2. This proves (48) because z, €2, for' w= 0, ¥, & = .

4) It remains to be shown that this limit point =z in (48) is a zero of f. In order

to show this, one defines the set of balls {Nz)} corresponding to the midpoints z,

of the balls Z). It is assumed that the algorithm SNA does not stop, hence
z 0 “Zw # #. By this and by the triangle inequality the radii of sz can be

bounded by

rad Nz & < z;v.\/(l = A} e (60)

On the other hand, one sees from (37) that

rad Mo = MAEG L > MA T Bz o - (61)
v vioo= v T
By inserting (61) and (59) in (60) one finally gets for v=0, 1, * ° °
il
[ RS §
< 2

| Hf(zQ)H S e .
| Since » < 1, this gives immediately lim f(z)) = 0. Because of the continuity of f
| Vo

and because of (48) the limit point z is therefore a (namely, the) zero of f in B.
| 5) This exhausts all logical possibilities. Hence Theorem 1 is proved. ®
5.5. With this procedure and these results an easy answer can be given to the
Extended Problem: let £ - F, assume A =<{a, «)« K(E'), a ¢ B, C := (A » B). Dpecide

3 if there is a zero z of f on C. If yes, then compute z in a constructive

| way.
i
Solution: Replace the initial step in the algorithm SNA by Z0 := B, Z1 = C. Sub-
g sequently define Z?. 23, + + ¢ as above by the continuation step. Then Theorem 1
,i ) remains valid if one replaces B by C.
|
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| 6. The general ball Newton algorithm NA.
Definition (NA): The initial step is carried out as in the algorithm SNA. It gives y
| Z0 := B and Z1 by (44). Assume that the ball Zv is already determined for

n

v

1. Define Cv = Zo n Zv and choose A(cv), A(C ) such that (20), (21)

are satisfied. Define the operator N by (36) with these constants. Carr, out

the continuation step as in the algorithm SNA.

Remark: At each step the "full available information" is exploited for updating.
Hence, the algorithm NA corresponds to the point Newton algorithm (1), (2).
Theorem 2: Let f € F and assume (25) and either
| a) the condition (26) or
g b) the condition (27).
| Then, all the statements of Theorem 1 also remain true for éhe algorithm NA. 1In
addition to (49) the following holds: The convergence of the ball radii is
either

a) superlinear or

b) quadratic.

The proof follows immediately from the definitions (25) to (27).

§
{ -24-
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7. Examples.

The following two examples have been chosen deliberately to he simple. The
space € = R2 is used. In both cases, the function f : € - € is a guadratic
polynomial, and its zeros are therefore known. Furthermore the derivative ' of
f is linear. If C e K(C) is a disc then the set ¢'(C) := {¢'(z) |z € C is alsoc

a disc. Hence the condition (35) can be verified extremely easily.

7.1. Non-existence example.

Let £(z) := (z-3+2i)(z-3-2i)=zz-6z+13 and B := (0, 2).
Clearly ¢'(B) = (-6, 4). By (34), (35) one gets therefore f ¢ F with /(B) = -3/10,
X(B) = 2/3.

By using the simplified ball Newton algorithm SNA one gets (see Figure 4):

2 = {0, 2% Nz

o i (3.9, 2.6, Z1 = (83/52, V3927/52), Nzl = (18319/5408, 3229/2704)

(3.4, 1.3). Hence Z0 n Nz, = @ and the algorithm SNA is stopped. By the non
existence test N and Theorem 1 there is therefore no zero z of f in Z0 = B.

7.2. Existence example.

et £(2) := (z-l)(z-4)=zz-Sz+4 and B := (0, 2). Clearly

$'(B) = (=5, 4). By (34), (35) one therefore gets f ¢ F with A(B) = -5/9 and

A(B) = 4/5. The discs Z0 := B, Zl' SR Z4, Nzo, SRy Nz3 of the algorithm
SNA are sketched in Figures 5 and 6. One sees immediately that Nzl = ZO. Hence by
the existence test E there exists (exactly) one zero 2z ¢ Nzl < Z0 = B. The speed of

convergence of the simplified algorithm SNA is very low. See the values in table 1
where the discs z0 to Z4 are given. After 4 iterations not even the first digit
of z is ensured.

The circles ¢' (Zv) are sketched in Figure 7 for v = 0, 1, 2. One sees that
0 € ¢' (Zl) and that ¢°' (ZO) n ¢' (Zl) = ¢>'(Zo). Hence, the improved algorithm NA
cannot give better values than the algorithm SNA before v = 2. Starting with the
index v = 2, the results are actually much better due to the inclusion
¢' (Zz) c ¢' (Zo). This can be seen from the values in table 1 for the discs 2. to

1
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From the values of the radii 7_, :3, 24 one can already anticipate gquadratic con-
vergence. After 4 iterations the quadratically convergent algorithm NA already
i juarantees nearly 5 digits of z. After one more iteration (which is not included in

i table 1) even 10 digits can be guaranteed.

| | Table 1. Comparison of the discs Z0 to Z4 created by the algorithms SNA and NA
for the example 7.2.

Simplified ball Newton algo- 11 Ball Newton algorithm NA,
| rithm SNA, linearly convergent |] quadratically convergent
i

Zo E {0 i 2 ) u (0 . )
2, s FRRE T LR '; Ol Ll )
z, f (0.85 e ) ‘i (0.85 . 9:36 )
Z, ; CE1125 o 021 ) : (1.000338 - - - « 0032801 ~ » ~ }
2, ; (0.9320 + - + , 0.1443 = ° =) ‘. (0.99999979 - - - , 0.00000740 - - -)
g .

“igure 4. Example 7.1 The four discs ZO' NzO, Zl, Nzl. The set ZO n Nz0

is shaded. Since Zy 1 Nzy = p there is no zero 2z ¢ 2,

=JG=
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Figure 5.

Figure 6.

Example 7.2.

0

d i 2. -
and in 1

Z, 0 Nz, is shaded. The zero z2=1 lies in 2,, Nz, Z 0 Nz

Sketched are the three discs zO' Nzo, Zl' The set

0

6]

R

Example 7.2, larger scale than Figure 5. The discs 2 o 2 are

shown. Note that 2z = Nz, < ZO. Hence by test E there exists a

zero z(= 1)

0 4

2 )i
with 2 « Nzl

In

ZO.




Figure 7. Example 7.2. The three discs ¢' (ZO) to ¢° (22) are shown
that 0 € ¢' (Zl) and that ¢' (Zz) < ¢ (ZO).

. Note
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